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Abstract
We present the necessary and sufficient condition for a square integrable
function on R

2N to be an ambiguity function corresponding to a square
integrable function on R

N . This condition has the form of an integral equation.
We also list some easier to check necessary conditions that must be fulfilled
by a function that is an ambiguity function of a pure state. We show how to
construct a wavefunction corresponding to a given ambiguity function and we
present examples of how our formal results can be used in practice.

PACS numbers: 03.65.Db, 03.65.Ca, 02.30.Rz

1. Introduction

The ambiguity function [1], known also as a characteristic function [2] or Shirley function
[3], is used to describe continuous variables physical systems. Initially, it was introduced for
classical systems in radar theory [1], and then in laser spectroscopy [3, 4], quantum optics
[5–7] and for analysis of the dynamics of dissipative systems [8]. For continuous variables,
the descriptions of a state by its wavefunction (density operator) or its ambiguity function
are completely equivalent. This function captures transparently the off-diagonal elements of
the density matrix and thus is especially useful, e.g. for studying decoherence. Traditionally,
investigations start from specifying the density operator and only then is the corresponding
ambiguity function calculated. Then, one can easily check whether the state of a system is pure
or mixed. However, sometimes it is more convenient to start the description of the state directly
with its ambiguity function. For example, dealing with a pure-state ambiguity function5 one
may modify this function slightly—the change may originate from phenomenologically or
empirically suggested adaptations of formalism. Then, it may not be immediately clear
whether the modified function is also a pure-state ambiguity function or not. Thus, a method
of recognizing the pure-state ambiguity functions would be useful. It is the purpose of this

5 From now on we shall call an ambiguity function corresponding to a pure state, a ‘pure-state ambiguity function’.
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paper to show that there exists a condition necessary and sufficient for a function to be such a
pure-state ambiguity function.

In physics, a pure state is usually defined as a square integrable function normalized to
1. However, the ambiguity function can be calculated for any square integrable function,
and from a mathematical point of view, it is easier and more elegant to consider an entire
space of square integrable functions and then a set of normalized functions as a subset of this
space. In this paper, we shall focus on the following problem: is a given square integrable
function defined on R

2N an ambiguity function corresponding to a square integrable function
defined on R

N or not. Although to simplify the notation6 we describe the case when N = 1,
a generalization to any N = 2, 3, 4, . . . can be done without serious difficulties. For the
convenience of the readers less familiar with mathematical notation and methods used in this
paper, we include the appendix ‘definitions and notation’ with brief lists of definitions of
symbols used. Further references to relevant textbooks are also included there.

Although this paper is predominantly of mathematical nature, the results presented are
also of physical interest, because they provide tools to construct and investigate models
related to realistic physical systems. Part of the possible applications comes from the fact
that ambiguity function is convenient for studying open systems because the master equation
has a quite simple form in this representation [8]. Our results allow us to perform the whole
analysis of such systems using ambiguity representation and at the same time maintain control
on whether subsystems are still pure or not or whether they become pure again during the
interaction. Whenever a system described corresponds to a pure state, one can retrieve its
wavefunction explicitly based solely on the results of this paper. For mixed states a similar
reconstruction would be more complicated but also very useful as it was shown that in
ambiguity representation interesting phase-space effects (e.g. sub-Planck structures) appear
even for mixed states [9].

2. The fundamental condition

To simplify notation, we introduce the following symbol:

WS[ψ](p, x) :=
∫

R

dξ

2π
e−ip ξ ψ�

(
ξ − x

2

)
ψ

(
ξ +

x

2

)
, (1)

for the ambiguity function corresponding to ψ ∈ L2(R). In this way, wavefunction dependence
of the ambiguity function is indicated explicitly.

From [10] (proposition 3.6 (ii), theorem 3.7, corollary 3.16, proposition 3.17), we obtain
the following fact valid for the group of real numbers R.

Fact 1. For WS[·] we have

1◦ ∀ψ ∈ L2(R) : WS[ψ] ∈ C∞(R2)

2◦ WS : L2(R) � ψ −→ WS[ψ] ∈ C∞(R2) is a continuous map.
3◦ ∀ψ ∈ L2(R) : WS[ψ] ∈ L2(R2)

4◦ WS : L2(R) � ψ −→ WS[ψ] ∈ L2(R2) is a continuous map.

Now we can formulate and prove the following fact.

Fact 2. For all ψ ∈ L2(R) and for all x, x0, p, p0 ∈ R:

WS[ψ]�(p0 − p, x0 − x)WS[ψ](p0 + p, x0 + x)

=
∫

R2

dx ′ dp′

2π
eip0x

′−ix0p
′
WS[ψ]�(p′ − p, x ′ − x)WS[ψ](p′ + p, x ′ + x). (2)

6 Mainly normalizing factors.
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For ψ ∈ S(R), equation (2) can be checked by a direct calculation using standard methods
of tempered distributions theory. Next, using the fact that a subspace S(R) is dense in L2(R),
we prove equation (2) for any function ψ ∈ L2(R). To avoid technicalities, we shall present
only the main points of this proof. Let (ψn)n∈N be a sequence of ψn ∈ S(R) convergent to
ψ ∈ L2(R), i.e. limn→∞ ‖ψ − ψn‖2 = 0. According to fact 1 (2◦ and 4◦), we have

lim
n→∞ ‖WS[ψ] − WS[ψn]‖∞ = 0, and lim

n→∞ ‖WS[ψ] − WS[ψn]‖2 = 0. (3)

From this we conclude that there exist constants M2 > 0 and M∞ > 0 that satisfy inequalities

∀n ∈ N : ‖WS[ψn]‖∞ < M∞ and ‖WS[ψn]‖2 < M2.

Taking into account also the following estimates,

|WS[ψn]�(p0−p, x0−x)WS[ψn](p0+p, x0 +x) − WS[ψ]�(p0−p, x0−x)

×WS[ψ](p0+p, x0 +x)| � 2 max(‖WS[ψ]‖∞,M∞)||WS[ψn] − WS[ψ]||∞
and∣∣∣∣
∫

R2

dp′ dx ′

2π
eip0x

′−ip′x0 [WS[ψn]�(p′ − p, x ′ − x)WS[ψn](p′ + p, x ′ + x)

−WS[ψ]�(p0 − p, x0 − x)WS[ψ](p′ + p, x ′ + x)]

∣∣∣∣
� max(‖WS[ψ]‖2,M2)||WS[ψn] − WS[ψ]||2 ,

recalling limits (3) and the density of space S(R) in L2(R), we check equation (2) for any
ψ ∈ L2(R2).

Remark 1. Equation (2) is analogous to equation (3.8) from [11] that is being fulfilled by the
Wigner function.

As we already know, for ψ ∈ L2(R), the ambiguity function is a square integrable
function, it satisfies equation (2), and a condition 2πWS[ψ](0, 0) = ‖ψ‖2

2 � 0, [9]. It is
interesting to establish whether any function satisfying equation (2) must be an ambiguity
function of some ψ . To emphasize the crucial role of the equation of the form of (2) in our
further considerations, we introduce the following definition.

Definition 1. We say that A ∈ L2(R2) fulfils a fundamental condition if and only if for all
x, x0, p, p0 ∈ R the following equation holds:

A�(p0 − p, x0 − x)A(p0 + p, x0 + x)

=
∫

R2

dx ′ dp′

2π
eip0x

′−ix0p
′
A�(p′ − p, x ′ − x)A(p′ + p, x ′ + x). (4)

Let us now establish some basic properties of functions that fulfil this fundamental
condition.

3. Properties of functions fulfilling the fundamental condition

It is not difficult to obtain

Fact 3. For any A ∈ L2(R2) that fulfils the fundamental condition (definition 1, equation 4),
and for FA

(p,x)(·1, ·2) defined as FA
(p,x)(·1, ·2) := A�(·1 − p, ·2 − x)A(·1 + p, ·2 + x) for any

3



J. Phys. A: Math. Theor. 42 (2009) 495301 L Praxmeyer et al

(p, x) ∈ R
2, the following conditions hold:

1◦. ∀ (p0, x0) ∈ R
2 : 2π |A(p0, x0)|2 = ∫

R2 dx ′ dp′ eip0x
′−ix0p

′ |A(p′, x ′)|2.
2◦. 2π |A(0, 0)|2 = ‖A‖2

2
.

3◦. (A(0, 0) = 0) ⇔ (A = 0 in L2(R2)).
4◦. ∀(p, x) ∈ R

2 : A�(0, 0)A(p, x) = A(0, 0)A�(−p,−x).
5◦. ∀(p, x) ∈ R

2 : (A(0, 0) �= 0) ⇒ (A(p, x) = A(0, 0)A�(−p,−x)A�(0, 0)−1).
6◦. (A(0, 0) ∈ R) ⇒ (∀(p, x) ∈ R

2 : A(p, x) = A�(−p,−x)).
7◦. ∀(p, x) ∈ R

2 : FA
(p,x) ∈ C∞(R2).

8◦. A ∈ C∞(R2).
9◦. ∀(p, x) ∈ R

2 : FA
(p,x) ∈ L2(R2).

10◦. A ∈ L4(R2).

Since equation (4) is invariant under transformation A → λA, for λ ∈ C, we conclude
that not every solution of this equation fulfils condition A(0, 0) � 0, and so not every one is
of the form A = WS[ψ]. Nevertheless, condition A(0, 0) � 0 determines those solutions of
equation (4) for which A = WS[ψ]. For A = 0, we have WS[0] = 0. In the considerations
that follow it is, therefore, sufficient to assume that A is a nonzero element of L2(R2), i.e.
A ∈ (L2(R2)\{0}). According to this assumption A(·, 0) ∈ (L2(R)\{0}), and, since the
Fourier transform is a unitary and consequently invertible map L2(R) −→ L2(R), we find

∃τ ∈ R :
∫

R

dp eiτpA(p, 0) �= 0. (5)

Remark 2. If A ∈ (L2(R2)\0) then the set
{
τ ∈ R :

∫
R

dp eiτpA(p, 0) �= 0
}

has a nonzero
Lebesgue measure.

This allows us to introduce the following definition.

Definition 2. Let τ be a fixed real number, such that inequality
∫

R
dp eiτpA(p, 0) �= 0 holds,

and let nτ ∈ (C\{0}). We define a function ψτ,nτ
as

ψτ,nτ
: R → ψτ,nτ

(x) := nτ

∫
R

dp exp

[
i
x + τ

2
p

]
A(p, x − τ) ∈ C. (6)

Remark 3. For any ψ ∈ L2(R) and τ ∈ R, the following inequality holds:∫
R

dp eiτpWS[ψ](p, 0) = |ψ(τ)| � 0.

The function (6) fulfils the condition ψτ,nτ
(τ ) �= 0. Using equation (4), we find

0 � ‖ψτ,nτ
‖2

2 = 2π |nτ |2A�(0, 0)

∫
R

dp eiτpA(p, 0), (7)

which, taking into account fact 3.3◦, means that

A�(0, 0)

∫
R

dp eiτpA(p, 0) > 0. (8)

Moreover, from fact 3 for any p, x ∈ R we have

WS[ψτ,nτ
](p, x) =

{
|nτ |2

[∫
R

dz eiτzA(z, 0)

]�}
A(p, x). (9)

Connecting equations (8) and (9) we obtain the following fact.

4
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Fact 4. For A ∈ (L2(R)\{0}) that fulfils the fundamental condition (4) and ψτ,nτ
defined by

(6), the following four conditions are equivalent:

1◦ A(0, 0) > 0

2◦
∫

R

dz eiτzA(z, 0) > 0

3◦ ∃nτ ∈ (C\{0}) : |nτ |2
[∫

R

dz eiτzA(z, 0)

]�

= 1

4◦ A = WS[ψτ,nτ
].

Finally, connecting fact 4.1◦, 4.4◦ and a trivial solution for A = 0, we can formulate

Corollary 1. If A ∈ L2(R) fulfils the fundamental condition, equation (4), then the following
two conditions are equivalent

1◦ A(0, 0) � 0
2◦ ∃ψ ∈ L2(R) : A = WS[ψ].

Remark 4. If A ∈ L2(R) fulfils the fundamental condition, equation (4), then

∃(α, ψ) ∈ [0, 2π [×L2(R) : A = eiαWS[ψ].

This means that every solution of equation (4) is (up to a phase factor) an ambiguity
function of a square integrable function on R.

Corollary 2. Assuming that for A ∈ L2(R2) the fundamental condition holds and A(0, 0) �= 0,
then there exist c ∈ (C\{0}) and ψ ∈ L2(R) such that ‖ψ‖2 = 1 and cA = WS[ψ].

4. Examples

As an illustration let us now consider some examples that exploit the results presented before.
In [9] (section C.2), we have considered the wavefunction

ψ(x) =
∞∑

n=0

(
n̄

n!

) 1
2

(2nn!
√

π)−
1
2 Hn(x) exp

(
−x2

2

)

= 1
4
√

π
exp

(
−x2 + n̄

2

) ∞∑
n=0

1

n!

(√
n̄

2

)n

Hn(x)

= 1
4
√

π
exp

(
−x2 + n̄

2

)
exp

(
− n̄

2
+ 2

√
n̄

2
x

)

= 1
4
√

π
exp(−n̄) exp

(
−x2

2
+

√
2n̄x

)
= 1

4
√

π
exp

(
− (x − √

2n̄ )2

2

)
(10)

for n̄ � 0. The ambiguity function corresponding to the state ψ(x), equation (10), is given by
[9]:

WS[ψ](p, x) = 1

2π
exp(−i

√
2n̄p) exp

(
−x2 + p2

4

)
. (11)

Examples 1–3 presented below are based on formula (11) and its simple modifications. They
allow us to illustrate the main result of this paper avoiding technical difficulties in calculation
of corresponding integrals. We shall only use the formula:

∫
R

dx exp(−a(x + ib)2) = √
π/a,

valid for a > 0 and b ∈ R.

5



J. Phys. A: Math. Theor. 42 (2009) 495301 L Praxmeyer et al

Example 1.

Let us assume that for n̄ � 0 we have a function A defined on R
2 by the formula

A : R
2 � (p, x) −→ A(p, x) := 1

2π
exp(−i

√
2n̄p) exp

(
−x2 + p2

4

)
∈ C (12)

and we want to check whether A is an ambiguity function corresponding to some wavefunction
and if so to find this wavefunction. First we shall check whether all conditions from fact 3 hold
for A defined above, as these conditions are usually much easier to verify than the fundamental
condition, equation (4), itself. If any of the conditions constituting fact 3 do not hold for A,
then A is not an ambiguity function of a pure state.

As A ∈ S(R2), it follows that A ∈ L2(R2), and conditions 7◦–10◦ from fact 3 are fulfilled.
Because A(0, 0) > 0, it is enough to check point 6◦ from 3◦ to 6◦, which for our example is
quite straightforward. Also condition 2◦ is fulfilled because

‖A‖2
2 = 1

4π2

∫
R2

dx dp exp

(
−x2 + p2

2

)
= 1

2π
.

Condition 1◦ holds because for all (p0, x0) ∈ R, we have |A(p0, x0)|2 = 1
4π2 exp

(− x2
0 +p2

0
2

)
and∫

R2

dp′ dx ′

2π
exp(ip0x

′ − ix0p
′)|A(p′, x ′)|2

= 1

8π3

∫
R2

dp′ dx ′ exp(ip0x
′ − ix0p

′) exp

(
−x ′2 + p′2

2

)

= 1

4π2
exp

(
−x2

0 + p2
0

2

)
.

Function A fulfils all conditions from fact 3, so we have to check the fundamental condition
from definition 1. The left-hand side of equation (4) for any p, p0, x, x0 ∈ R equals

A�(p0 − p, x0 − x)A(p0 + p, x0 + x)

= 1

4π2
exp(−i2

√
2n̄p) exp

(
−p2 + p2

0 + x2 + x2
0

2

)
,

and the right-hand side of equation (4) reads∫
R2

dp′ dx ′

2π
exp(ip0x

′ − ix0p
′)A�(p′ − p, x ′ − x)A(p′ + p, x ′ + x)

= e(−i2
√

2n̄p)

8π3
exp

(
−p2 + x2

2

)∫
R2

dp′ dx ′ e(ip0x
′−ix0p

′) exp

(
−p′2 + x ′2

2

)

= 1

4π2
exp(−i2

√
2n̄p) exp

(
−p2 + p2

0 + x2 + x2
0

2

)
.

It is seen that function A defined by (12) fulfils the fundamental condition and A(0, 0) = 1
2π

,
which (see corollary 2) means that there exists a function ψ ∈ L2(R) normalized to 1, such
that A = WS[ψ]. Now, we can determine this function following the steps described in the
previous section.

In our case, A(p, 0) = 1
2π

e−i
√

2n̄p e− p2

4 and it is easy to check that∫
R

dp ei
√

2n̄pA(p, 0) = 1

2π

∫
R

dp e−(
p

2 )2 = 1√
π

�= 0.

6
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This means that τ := √
2n̄ fulfils inequality (5) and according to definition 2 let us consider

the function defined by equation (6) (for simplicity of notation, we shall use N instead of
nτ = n√

2n):

ψ√
2n̄,N (x) := N

∫
R

dp exp

(
i
x +

√
2n̄

2
p

)
A(p, x −

√
2n̄)

= N
2π

∫
R

dp exp

(
i
x +

√
2n̄

2
p

)
e−i

√
2n̄p e− p2

4 e− (x−√
2n̄)2

4

= N
2π

exp

⎛
⎜⎝−

(
x − √

2n̄
)2

2

⎞
⎟⎠ ∫

R

dp exp

⎛
⎝−

[
p + i(x − √

2n̄)

2

]2
⎞
⎠

= N√
π

exp(−n̄) exp

(
−x2

2
+

√
2n̄x

)
.

Because [∫
R

dz ei
√

2n̄zA(z, 0)

]�

= 1

2π

∫
R

dz exp

(
−z2

4

)
= 1√

π

fact 4.3◦ means that |N | = π
1
4 . Choosing a normalization constant N = π

1
4 , we obtain the

wavefunction given by

ψ√
2n̄, 4√π

(x) = e−n̄

4
√

π
exp

(
−x2

2
+

√
2n̄x

)
.

This is a state whose ambiguity function is A from equation (12). Comparing this result with
equation (10), we conclude that we have reconstructed the wavefunction correctly.

Next, we shall consider two additional examples based on modifications of the function
A. We want to check whether they lead to ambiguity functions corresponding to pure states.

Example 2.

Let us consider function B defined for n̄ � 0 as

B : R
2 � (p, x) −→ B(p, x) := 1

2π
exp(−i

√
2n̄ px) exp

(
−x2 + p2

4

)
∈ C. (13)

Function B ∈ S(R2) ⊂ L2(R2) and if it were an ambiguity function of some wavefunction
ψ ∈ L2(R), it would have to fulfil conditions from fact 3. We can check that B(0, 0) =
1/(2π) ∈ R; however,

B�(−p,−x) = 1

2π
exp(i

√
2n̄px) exp

(
−x2 + p2

4

)
,

which, if compared with equation (13), shows that condition 6◦ from fact 3 does not hold
for n̄ > 0. For all positive n̄ function B is not an ambiguity function corresponding to some
ψ ∈ L2(R). For n̄ = 0, B is an ambiguity function corresponding to the wavefunction
ψ(x) = π− 1

4 exp(−x2/2).

Remark 5. Because for all (p, x) ∈ R
2 functions A from example 1 and B from example 2 are

connected by the following equation |A(p, x)|2 = |B(p, x)|2, the function B fulfils condition
fact 3.1◦ but—as we know from example 2—it does not fulfil the fundamental condition from
definition 1. This shows that the fundamental condition is stronger than fact 3 point 1◦ alone.

7
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Example 3.

Similarly as in previous examples we want to check whether for n̄ � 0,

C : R
2 � (p, x) −→ C(p, x) := 1

2π
exp(−i

√
2n̄ (p + x)) exp

(
−x2 + p2

4

)
∈ C (14)

is an ambiguity function of some state. First, we check whether all conditions from fact 3
are fulfilled, which similarly as in example 1 is quite straightforward. Points 7◦–10◦ do hold,
because C ∈ S(R2). By direct calculation, we also check that point 6◦ is fulfilled; 3◦, 4◦

and 5◦ are fulfilled automatically. Points 2◦ and 1◦ can be checked using simple integrals
introduced already in example 1.

For function C, fact 3 holds, so we check also the fundamental condition (4), just
as in example 1. Function C defined by formula (14) fulfils the fundamental condition
and C(0, 0) = 1/(2π). Thus, corollary 2 tells us that there exists a normalized to one
function ψ ∈ L2(R) such that C = WS[ψ]. Let us find this function. In this case
2πC(p, 0) = exp(−i

√
2n̄p − p2/4) and

∫
R

dp ei
√

2n̄pC(p, 0) = 1

2π

∫
R

dp e−(
p

2 )2 = 1√
π

> 0.

It means that τ := √
2n̄ satisfies inequality (5) and according to definition 2 let us consider

the function (6):

ψ√
2n̄,M(x) := M

∫
R

dp exp

(
i
x +

√
2n̄

2
p

)
C(p, x −

√
2n̄)

= M
2π

∫
R

dp exp

(
i
x +

√
2n̄

2
p

)
e−i

√
2n̄(p+x−√

2n̄) e− p2

4 e− (x−√
2n̄)2

4

= M
2π

e−i
√

2n̄(x−√
2n̄) e− (x−√

2n̄)
2

2

∫
R

dp exp

⎛
⎝−

[
p + i(x − √

2n̄)

2

]2
⎞
⎠

= M√
π

exp(−n̄) exp(−i
√

2n̄(x −
√

2n̄)) exp

(
−x2

2
+

√
2n̄x

)

= M√
π

exp(2in̄) exp(−n̄) exp

(
−x2

2
+

√
2n̄(1 − i)x

)
.

According to fact 4.3◦, the normalizing constant fulfils the equality |M| = π
1
4 . Choosing

M = π
1
4 exp(−2in̄), we obtain the following wavefunction:

ψ√
2n̄, 4√π exp(−2in̄)(x) = e−n̄

4
√

π
exp

( − i
√

2n̄x
)

exp

(
−x2

2
+

√
2n̄x

)
.

Function C defined by formula (14) is the ambiguity corresponding to the pure state
ψ√

2n̄, 4√π exp(−2in̄)(x) defined above.
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Example 4.

Let 0 < q < 1 and

D : R
2 � (p, x) −→ D(p, x) := 1

2π

(
1 − q(p2 + x2)

2

)
exp

(
−p2 + x2

4

)
∈ C. (15)

D is an ambiguity function for the mixed state obtained from a binomial distribution of Fock
states for probabilities q and N = 2; see [9], equation (80). We start a verification whether
D can be an ambiguity function for a pure state, checking properties described by fact 3.
Similarly as in the previous examples D ∈ S(R2), so properties 7◦–10◦ are fulfilled. Because
D(R2) ⊆ R and D(−p,−x) = D(p, x), property 6◦ also holds and conditions 3◦–5◦ are
automatically fulfilled. However, property 2◦ does not hold. We have 4π2|D(0, 0)|2 = 1 and

‖D‖2
2

2π
=

∫
R2

dp dx

2π
|D(p, x)|2

= 1

8π3

∫
R2

dp dx

[
1 − q(x2 + p2) +

q2

4
(x2 + p2)2

]
exp

(
−x2 + p2

2

)

= 1

4π2

[∫ ∞

0
dr r e− r2

2 − q

∫ ∞

0
dr r3 e− r2

2 +
q2

4

∫ ∞

0
dr r5 e− r2

2

]

= 1

4π2
[1 − 2q + 2q2] = 1 + 2q(q − 1)

4π2
<

1

4π2
= |D(0, 0)|2. (16)

From (16) it follows that the function D does not fulfil condition 1◦ of fact 3. It is easy to
check that

|D(p0, x0)|2 −
∫

R2

dp′ dx ′

2π
exp(ip0x

′ − ix0p
′)|D(p′, x ′)|2

= q(1 − q)
[
1 − (

p2
0 + x2

0

)]
2π2

exp

(
−p2

0 + x2
0

2

)
. (17)

To sum up: the function D defined by formula (15) does not fulfil conditions 1◦ and 2◦ from
fact 3; thus, it is not an ambiguity function of a pure state. Let us note that from equations (16)
and (17), it is seen that for q = 0 or q = 1, the function given by formula (15) would fulfil
fact 3. This is not surprising as for both q = 0 and q = 1 in the binomial distribution, only
one term is left, and then the state given by formula (80) from [9] corresponds to a pure state.

5. Concluding remarks

We have derived the necessary and sufficient condition that determines whether a given square
integrable function is an ambiguity function corresponding to a pure quantum state. The
fundamental condition is given by equation (4) (definition 1). However, when we are interested
in checking whether a given function is a pure-state ambiguity function, it is reasonable to
begin such a verification checking the properties listed in fact 3. If these properties do not
hold the function we investigate is not a pure-state ambiguity function. Remark 4 presents the
general form of a solution of equation (4) in a form from which it is clear that any of those
solutions is up to a complex factor a pure-state ambiguity function. It follows from equation
(1) and corollary 1 that any function A fulfilling the fundamental condition, equation (4), is a
pure-state ambiguity function if and only if 2πA(0, 0) = 1. It is worth noting that equation
(6) provides a method of constructing a wavefunction corresponding to a given ambiguity
function. Finally, in the last section, several examples that illustrate practical use of the main
results of this paper are described.
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Appendix. Definitions and notation

Lk(RN) is the space of all functions integrable with kth power on R
N , where k, N are natural

numbers (1, 2, 3 . . .). We say that two functions f, g ∈ Lk(RN) are equivalent if and only if
they differ on a set of zero measure. Lk(RN) is the Banach space of equivalence classes of
functions from Lk(RN). The norm on Lk(RN) is given by

‖f ‖k :=
[∫

RN

dx|f (x)|k
] 1

k

.

If in this paper we write f (·) or f (x) for f ∈ Lk(RN), it means that we deal with a function
from Lk(RN) that represents a class f . For more details on the theory of Lk(RN) and Lk(RN),
see [12] (chapter XIII.7, XIII.14).

The Schwartz space S(RN) is the linear space of all smooth and rapidly decreasing
functions on R

N , i.e. f ∈ S(RN) if and only if f ∈ C∞(RN) and for any
a1, . . . , aN , b1, . . . , bN ∈ N

sup
x∈RN

∣∣∣∣xa1
1 · . . . · x

aN

N

∂b1+···+bN

∂b1x1 · . . . · ∂bN xN

f (x)

∣∣∣∣ < ∞.

S(RN) is a Fréchet space and its dual space S(RN)′ is the space of tempered distributions.
More information about Schwartz spaces and tempered distributions can be found in [13]
(chapter 7) or chapter XIX of [12].

C∞(RN) is the Banach space of all continuous and vanishing at infinity functions on R
N .

It means that f ∈ C∞(RN) if and only if f ∈ C(RN) and

∀ε > 0 ∃r > 0 ∀ x ∈ {y ∈ R
N : ‖y‖ > r} : |f (x)| < ε.

The norm on the space C∞(RN) is defined by ‖f ‖∞ := supx∈RN |f (x)|. For details see
chapter IV.5 of [14].
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